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Transport Phenomena in a Plane Shock Wave 
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With the use of the nonpolynomial  closure 1/v z in the Mott-Smith approxima- 
tion of the solution of the Boltzmann equation, we obtain a value of the density 
gradient in the limit of a very weak shock wave that is close to the correct value. 
For the determination of the transverse temperature gradient we calculated the 
v2/v~ moment  of the Mott-Smith collision integral. The effective values of 
viscosity and thermal conductivity in the limit of a very weak shock wave were 
calculated for inverse-power potentials and found to agree almost exactly with 
the Chapman-E nskog  values. Such a comparison can serve as a criterion for the 
evaluation of different bimodal theories. Various bimodal theories give different 
values of viscosity and thermal conductivity, but all of them give 33 % too high 
a value of the Eucken ratio. 
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1. I N T R O D U C T I O N  

In the Mott-Smith method (1) and in a number of related treatments ~2-6) a 
plane stationary shock wave is described by the bimodal distribution 
function 

fb  = v ( z ) f o ( v )  + [1 - v(z)] f l (v)  (1) 

where 

f i  = ni(2RTi/re)  -3/2 exp[  - (v - ui )2 /2RTi]  

v ( + o o ) = 0 ,  v ( - o o ) = l ,  and ni, ui, and T i are upstream ( i = 0 )  and 
downstream ( i =  1) densities, velocities and temperatures, respectively. 
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The first three moments of the Boltzmann equation (for 1, v~, and v 2) 
give the Hugoniot relations at the discontinuity. For the determination of 
the function v(z) Mott-Smith and other authors suggest using the 
additional moment closing equation for a polynomial function q~(v): 

d 
<~=q, >~ = f a'v ~oJ(s f~) g 

or 

((Vz(,O)o-- (v~q9 1)dv/dz=f d3vcp[J(fo,fl)+J(L,fo)] v ( 1 - v )  (2) 

where ( . . .) i=Sd3v . f i ,  i---b, O, 1. 
The solution of this equation for any (p is of the form 

v ( z )=  [1 +exp(4z/~)] 1 

The shock wave thickness 6 =  1/Idv/dz[m,• is thus the only quantity that 
depends on the Mach number M, the intermolecular potential, and the 
choice of a closing equation. 

Various bimodal theories (1-6) have been compared with experiment, 
but we offer an analytical asymptotic (M ~ 1) approach to the evaluation 
of these theories based on the comparison of the effective viscosity and 
thermal conductivity coefficients calculated by means of the distribution 
function fb with the Chapman-Enskog values of these coefficients. This 
comparison is made in Appendix A. The trimodal approximation of Salwen 
et al. ~8~ is shown to give the best results. In this paper, however, we shall 
treat only the bimodal approximation, because of its physical clarity and 
analytical ease. 

In Section 2 we suggest using l/v= as a closing moment. In Section 3 
we use the v~/v= moment equation for the evaluation of the transverse 
temperature gradient. We calculate corresponding transport coefficients for 
several intermolecular potential and for M--* 1. Details are given in 
Appendix B. 

2. USING 1]vz CLOSURE 

The bimodal distribution function obeys the requirement that its three 
moments for v=, v~, and v=v 2 are equal to the corresponding moments of 
the exact solution of the Boltzmann equation: 

(v=>~ = (v=), (v~)~ = (v~>, (v=v2)~ = (v~v 2) (3) 
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But we cannot say anything about a similar relation for (1 )b ,  so the use 
of the bimodal function for the evaluation of the density (or velocity) is 
completely unjustified. 

Nevertheless, it is shown in Appendix A that the v 2 closing equation 
gives the exact limiting value (when M--* 1) of the velocity (and hence 
density) gradients. The success of this closure seems to be a kind of good 
fortune. 

The choice of the moment equation with 1/Vz as a closure is more 
consistent. In the lhs of this equation we have from Eq. (2) 

(no -/'/1) dv/dz= (9mnZ/32#)(5RTo/3)l/2ct2v(1 -v) ,  ~ = M  2 -  1 --*0 (4) 

where p is the effective viscosity coefficient (see Appendix A). The collision 
integral in the lowest approximation is 

J(fb, f b ) =  �89 - v) I d3vl Iv1 - v l  b db & fo(v)fo(vl)  

X (4U2{Cz 2} - -  4Ut{Cz c2} q- t 2{C4})  

where u =  (uo-ul)/(2RTo) 1/2, t= T j T o -  1, e=(v-uo)/(2RTo) 1/2, and 
{A} =A' + A ' I - A -  A1. 

For the integration over ~ we pass to the center-of-mass velocity 
G = ( e + e l ) / 2  and the relative velocity g = e ~ - e  and make use of the 
dependence of g' on g cited, e.g., by Bird. (1~ After some calculations we 
obtain 

J= (o:2n~/47zz)( ZRTo)- 3/2v(1 - 1)) 

x fdSel Iv 1 - v[ b db sin 2 Z exp( - c  2 - c 2) 

x [(15/8)(g 2 -  3g 2 ) -  3a(Gzg2- 3gzG.g)  + GZg 2 -  3(G.g)2]  (5) 

where 

a = ( 5 / 6 )  1/2 

At first we restrict ourselves to Maxwell molecules. For this model we have 

f lVl - v[ X = 2kTo/37Z#o b db sin 2 

so in the rhs of Eq. (5) we can integrate over e 1. After that, multiplying by 
1/vz and integrating over cx and Cy, we get 

f d3v J/vz = ~cdnZ(2~RTo) '/2(2kTo/3#o) v(1 - v) (6) 
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where 

~ dcz(cz+a) ~(3/8-9aCz/8-9c~/16+3ac2/4-c4J8)exp(-c~)  

The principal value of ~ is 

~ = [29a + ( 1 7 / 3 6 ) ~  exp( - a 2) erfi a] ~ / 4 8  = 1.430 (7) 

Thus, equating the right-hand sides of Eqs. (4) and (6) and taking into 
account Eq. (7) and the Chapman-Enskog value of g0, we obtain for 
Maxwell molecules (cf. Appendix A) 

fi = #/#o = 27ax/-~/32~ = 0.954 

The calculations for an arbitrary inverse-power potential are carried out in 
Appendix B. 

3. C A L C U L A T I O N  OF T H E  T R A N S V E R S E  T E M P E R A T U R E  
G R A D I E N T  A N D  T H E  EFFECTIVE  T H E R M A L  
C O N  D U C T I V I T Y  

The bimodal function fb does not satisfy any conditions similar to (3) 
2 for the moment (vx).  That is why the calculation of the transverse 

temperature Tx= (mvZ)/kn with the use of fb is not correct. But that is 
exactly what was done in all the bimodal theories, (1 7) leading to too high 
values of • (see Appendix A), i.e., to too low temperature gradients. 

To estimate the transverse temperature gradient, we propose to apply 
the 2 Vx/V ~ moment equation: 

d(v~)/dz  = f d~v J(fb, fb)v~/vz (8) 

Here fb is supposed to be determined with Vz 2 closure, or with l/vz closure, 
as these closures provide the correct density gradient. The lhs of Eq. (8) is 
n(z) dTx/dz + Tx dn/dz. 

With the use of Eq. (5), the rhs of Eq. (8) for Maxwell molecules takes 
the form 

f d3v Jv2~/vz (e2n2(2zRTo) 1/2(2kTo/3~#o) v(1 - v) 

where 

= ~ f ~ dcz (Cz + a)-1(31/8 - 3acz/2 - 13c2/4 + 3ac~ - c4/2) e x p ( -  c~ 2) 

= [ 7 7 a -  ~ e x p ( - a  2) erfi a] ,,/-~/96 = 1.294 
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If we determine n(z) using the Mott-Smith theory with v 2 closure, we then 
obtain from Eq. (8) 

�9 ('dTUdz)M ~ 1 , z = O  = O.0288~2(nomZ/k#o)(2RTo) 3/2 

For the calculation of the average temperature gradient we use T~ given by 
fb determined by v~ closure. Thus, we obtain 

tc = 1.08~c o 

where •o is the Chapman Enskog value. We may as well use fb determined 
by 1/v= closure. In this case we have 

~r = 1.1 lx0 

Similar calculations for non-Maxwell inverse-power potentials are made in 
Appendix B. 

4. C O N C L U S I O N S  

We suggested using a nonpolynomial closure for the Mott-Smith 
approximation. With the use of 1/Vz closure and v~/vz for the determination 
of the transverse temperature gradient, we calculated the effective values of 
viscosity and thermal conductivity for inverse-power potentials (from 
Maxwell molecules to rigid spheres) and found that they are close enough 
to the Chapman-Enskog values when M ~ 1. All known bimodal theories 
were thus evaluated and were found to give the same 33 % too high value 
of the Eucken ratio. 

APPENDIX  A 

The Mott-Smith approximation function is a linear combination of 
two Maxwellians. That is why it is easy to calculate with this distribution 
function the profiles of density, velocity, pressure, viscous stress and heat 
flux, longitudinal and transverse temperatures, and their gradients. Some of 
these calculations were made by Mott-Smith ~1) and Bird. ~1~ In the limit 
M ~ 1 we can thus obtain the effective viscosity /~ as the ratio of the 
viscous stress to the velocity gradient 

# = (6/8) m ( u o -  ul) n(z)l M~ 1 

and the effective thermal conductivity as the ratio of the heat flux to the 
temperature gradient 

~c = (6/4)mnouoR(uo--Ul)/ { (Uo + Ul)/5 + (Uo--Ul)[no(z)--nl(z) ]/3n(z) ) [ ~ 1  



434 

Table I. 

Bashkirov and Orlov 

Reduced Viscosity and Thermal Conductivity for Various Shock Wave 
Theories ~ 

fi t~ A K~ A~ 

Ref. 1, v~ 1 4/3 0.33 1.084; 1.126" 0.08;0.12" 
Ref. 1, v 3 7/6* 14/9" 0.58* 1.042' 0.17" 
Ref. 2 47/90* 94/135" 0.57* 2.321" 1.40" 
Refs. 3 and 5 3/5 4/5 0.45 1.698; 1.802" 0.73;0.83" 
Ref. 4 0.957* 1.275' 0.28* 1.155' 0.16' 
Ref. 6 10/13 40/39 0.23 1.354 0.42 
Ref. 8, v~, v3~ 1 68/71 0.04 1.126 0.13 
Ref. 8, v~, vzv 2 1 1 0 1.126 0.13 
Ref. 8, v~, v~v z 163/160 41/40 0.03 1.114 0.12 
Present work, 1Iv z 0.954; 1.086" 1.272; 1.448" 0.28;0.46* 1.113; 1.076" 0.12;0.11' 

Maxwell molecules and/or rigid spheres (asterisk). 

The comparison of these effective transport  coefficients with their 
Chapman-Enskog  counterparts permits us to compare various bimodal 
theories. The results are presented in Table I in the form of reduced 
coefficients/~ = #//~o and ~ = ~c/~:0. Note that various bimodal theories give 
more or less satisfactory # and ~, but all of them give the same 33 % too 
high value of the Eucken ratio. 

As long as the viscous stress does not depend explicitly on the 
closure, ~1~ Table I shows that the Mott-Smith theory for q~ = v 2 describes 
the shock wave thickness and the gradient of the density (as well as of the 
velocity) correctly in the limit M - ~  1~ For bigger M this theory gives a 
thickness 6 well describing the Monte Carlo simulation results. (1~12) As a 
general estimation parameter, we introduced A: 

A2= (Si -  1) 2+  ( ~ -  1) 2 

The results of the trimodal theory of Salwen e t  al.  ~8) for various pairs of 
closing moments are also presented in Table I for completeness. The last 
two columns of Table I present the thermal conductivity ~u and the 
corresponding value of d~ calculated for Maxwell molecules and/or for 
rigid spheres (denoted by an asterisk) with the use of the method of 
Section 3 and fi obtained in each reference. 

A P P E N D I X  B 

For  the calculation of the effective viscosity in the limit M--* 1 for the 
intermolecular potential U ~  r - p  we use Eqs. (4)-(6) to obtain, after the 
transformation x/2  G --* G, g/x/2 --* g, 
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fi -1  = [ 9 x / ~  rcs/2r(4 _ 2 / p ) / l O ]  1 

• f d3G d3g [Gz + x / f f f S -gz ] - lg  1-4/p 

• exp( - G 2 - g2)[(15/4)(g 2 - 3g 2) 

- 3 , ~ f S  (Gz g 2 -  3gzG. g) + G2g2- 3(G.g)  2] 

The integration over Gx, Gy and over Gz in the sense of the principal value 
is carried out easily. After that we use the identity 

foo dgx f ~  dgy f (g ,  gz)= 2re f ~  de g f (g ,  gz) 
- a z  m ~1 gzl 

for integration over gx, g,. The remaining integral over gz 

~.l 1 = [lOx/-~/9hF( 4 _ 2/p)] 

x dgz (1~5 2 2 - 3gzF3)(g Z - 5hgz + 119/12) 
- - o o  

x e x p ( - b  2) erfi b 

where b = h -  gz, h = x ~ ,  and F N = F ( N / 2 -  2/p, g~), was computed on a 
PC using the Hermite quadrature formula. The results are presented in 
Table II. 

For  the calculation of the effective thermal conductivity we first 
express the longitudinal temperature gradient in terms of # with the use of 
Eq. (4) and the transverse temperature gradient in terms of the integral (8). 
The ratio of the heat flux to the gradient of the average temperature gives 
the effective thermal conductivity. After some algebra we have 

1/2fi) v(1 - v)(3/8) hotZnZm(RTo)3/2/i.to = ~ d3v Jv2/v~ (1/e + 
d 

Table II. Reduced Viscosity and Thermal  Conduct iv i ty  for  the Inverse-Power  
Potential  U ~ r -p 

p 4 5 6 7 8 I0 11 oo 

fi 0.954 0.978 0.994 1.006 1.016 1.029 1.034 1.086 
~1 1.084 1.092 1.097 1.102 1.104 1.108 1.I10 1.126 
~2 1.113 1.104 1.099 1.096 1.093 1.089 1.088 1.076 
A t 0.08 0.09 0.10 0.10 0.10 0.11 0.11 0.13 
A 2 0.12 0.11 0.10 0.10 0.09 0.09 0.09 0.11 

822/64/1-2-28 
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T h e  i n t e g r a t i o n  in the  rhs  is car r ied  ou t  in the  s a m e  way  as before.  T h e  

resul t  is 

1/ff + 1/2ki = - 8/9 + [5 x/~/12hF(4 - 2 /p ) ]  

x dgz [ ( 1 3 / 4 - 3 h b + b 2 ) ( F 7  - 2 4 4gzF5  + 3gzF3)  
oO 

+ (11/4 + 3hb + b2)(F5 - 3g2/ '3  ) - g z ( 9 h  + 6b)(F5 - gz f,3) ] 2  

x e x p ( - b  2) erfi b 

2 c losure ,  w h e n / 2 - =  1 (~1), and  wi th  This  exp re s s ion  for ff was used  wi th  v~ 

1/vz c losure  (if2). T h e  resul ts  a re  also p re sen ted  in T a b l e  II. 
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